Divisibility by 9

We show that a positive integer is divisible by 9 if, and only if, the sum of its digits when written in standard decimal notation is also divisible by 9 .

The key idea is to think about the meaning of the standard decimal notation.
It helps to begin with a numerical example. For example, the notation " 4833 " represents the number $4000+800+30+3$, that is, $4 \times 1000+8 \times 100+3 \times 10+3$.

It follows that $4833=4 \times(999+1)+8 \times(99+1)+3 \times(9+1)+3$

$$
\begin{equation*}
=(4 \times 999+8 \times 99+3 \times 9)+(4+8+3+3) . \tag{1}
\end{equation*}
$$

Since each of the products $4 \times 999,8 \times 99$ and 3×9 is divisible by 9 , the sum $4 \times 999+8 \times 99+3 \times 9$ is also divisible by 9 . Hence, from (1), we see that

4833 is divisible by 9 if, and only if, $4+8+3+3$, is divisible by 9 .
It is easy to generalize this argument. We first note that for each positive integer k, the number $10^{k}-1$ is divisible by 9 .

Now let n be a positive integer which is written in standard decimal notation as

$$
a_{k} a_{k-1} \ldots a_{2} a_{1} a_{0}
$$

where each of $a_{0}, a_{1}, \ldots a_{k-1} a_{k}$ is a digit in the range from 0 to 9 .
Then

$$
\begin{align*}
n & =a_{k} \times 10^{k}+a_{k-1} \times 10^{k-1}+\ldots+a_{2} \times 100+a_{1} \times 10+a_{0} \\
& =a_{k} \times\left(10^{k}-1+1\right)+a_{k-1} \times\left(10^{k-2}-1+1\right)+\ldots+a_{2} \times(99+1)+a_{1} \times(9+1)+a_{0} \\
& =\left(a_{k} \times\left(10^{k}-1\right)+a_{k-1} \times\left(10^{k-1}-1\right)+\ldots+a_{2} \times 99+a_{1} \times 9\right)+\left(a_{k}+a_{k-1}+\ldots+a_{2}+a_{1}+a_{0}\right) . \tag{2}
\end{align*}
$$

Since each of the products $a_{k} \times\left(10^{k}-1\right), a_{k-1} \times\left(10^{k-1}-1\right), \ldots, a_{2} \times 99$ and $a_{1} \times 9$ is divisible by 9 , the sum $\left(a_{k} \times\left(10^{k}-1\right)+a_{k-1} \times\left(10^{k-1}-1\right)+\ldots+a_{2} \times 99+a_{1} \times 9\right)$ is also divisible by 9 . Therefore, by (2),
n is divisible by 9 if, and only if, $a_{k}+a_{k-1}+\ldots+a_{2}+a_{1}+a_{0}$ is divisible by 9 .

